
 Cheat Sheet
Standard Machine Configuration
git config --global user.name "Your Name"

git config --global user.email "your.email@example.com"

git config --global core.editor nano

git config --global init.defaultBranch main

git config --global alias.graph \

 "log --all --graph --oneline --decorate"

For Linux or macOS only:

git config --global core.autocrlf input

For Windows only:

git config --global core.autocrlf true

Only if you're behind a corporate proxy on Windows:

git config --global http.sslBackend schannel

Check configuration:

git config -l

Basic Versioning
git <command> --help Show help for any <command>.
git init Setup repository by creating .git/ in current directory.
git status Show the current state of the branch, uncommitted

changes, and staged changes.
git add <files> Add uncommitted changes in <files> to the

staging area. Adding --patch prompts for each change.
git commit Create a new commit from staged changes.
git tag -a <name> -m "<message>" Add an annotated tag to the

current commit with the given <message>.
git diff Compare uncommitted changes to the last commit.

Optionally add <commit> to compare to that commit.
git diff --staged Show differences between the staging area

and the last commit (useful before committing).
git restore <files> Update <files> to match the last commit.
git restore --source=<commit> <files> Update <files> to

match the specified <commit> (e.g. HEAD, SHA, branch, or tag).
git revert Create a commit that reverses changes in <commit>.

Exploring History
git log Show the history of commits in the current branch.
git log <branch> Show commits in the specified <branch>, or

specify --all for all branches.
git log <files> Show commits that changed the specified

<files>. Add --follow to trace history across file renames.
git log --stat Include summary of changes for each commit.
git log --patch Show the full diff for each commit.
git log --author "<author>" Show commits by <author>.
git log --since "<start-date>" --until "<end-date>" Show

commits made between <start-date> and <end-date>.
git log --grep "<search-term>" Show commits with a message

that contains <search-term>.
git log -S "<search-term>" Show commits with a diff that

contains <search-term>. AKA The Git Pickaxe.
git blame <file> Show the commit, date, and author of each line

in <file>. Ignore whitespace changes with -w, and optionally
trace copies within the file (-M) or across files (-C).

git bisect start <bad> <good> Binary search to find the first
"bad" commit after <good> commit and before <bad> commit.

git bisect good During bisect, mark current commit as "good".
git bisect bad During bisect, mark current commit as "bad".
git bisect skip During bisect, mark current commit as "unsure".
git bisect reset Restore the state of the repository prior to

running git bisect start.

Working with Remotes
git clone <remote-url> Clone the specified remote repoistory as

a local repository in a new directory.
git remote add origin <remote-url> Add a remote named origin

to an existing local repository.
git remote -v Show remotes that can be pushed and fetched.
git push -u origin <branch> Push the local state of <branch> to

the origin remote. Often shortened to git push after the first
push to a particular branch. Include tags with --tags.

git fetch Update the local references to remote branches for the
default remote (usually origin). Include tags with --tags.

git merge --ff-only origin/main Safely update the local branch
with fetched commits on the origin/main remote reference.
Fails if local commits prevent fast-forwarding.

Branching and Merging
git graph Graphically log branches (alias in standard config).
git branch <branch-name> Create a new branch named <branch-

name> from the currently checked-out branch/commit.
git switch <branch-name> Check-out the specified branch.

Updates HEAD to point to the branch.
git merge <branch-name> Update the current branch by merging

in commits from <branch-name>. Creates a merge commit if fast-
forwarding is not possible.

git merge --abort Restore repo state prior to git merge.

Rewriting History (Danger Zone!)
git rebase <branch-name> Update the current branch by

replaying its commits on top of <branch-name>.
git rebase --abort Restore repo state prior to git rebase.
git rebase --interactive HEAD~5 Rewrite the last 5 commits of

the current branch by deleting, editing, or re-ordering commits.
git cherry-pick <commit> Replay <commit> on the current branch.
git commit --amend Rewrite the last commit with staged changes.
git reset <commit> Force current branch to point to <commit>,

potentially losing commits. --soft, --mixed, and --hard options
control what happens to the working directory and staging area.

git filter-repo Power tool for rewriting history, e.g. removing a
file from every commit in history. Installed independently of Git.

git push --force Push the current local state of the current
branch to its remote equivalent, even if commits on the remote
would be lost.

git reflog Show commits that HEAD has recently pointed to.
Useful for finding a lost commit to reset to.

This cheat sheet is licensed under CC BY-SA 4.0.

Remote Repository (e.g. GitHub)Local Repository

Remote BranchRemote Branch ReferenceLocal BranchStaging AreaWorking Directory

git add

git commit

git push

git fetch

git merge --ff-only origin/*

(merging updates files in the working directory)

https://technoon.org/gitnoon/
https://technoon.org/gitnoon/
https://technoon.org/
https://technoon.org/
https://github.com/newren/git-filter-repo
https://creativecommons.org/licenses/by-sa/4.0/

